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§1 Why-Question

1% Why-Question 3% Answer 2581432




Example (EI5R)
Q: Aftats BT ?
A:BAATET

Example (#21] (Nomological))
Q AftARTEREREKN?
A:
@ XSTEHTAMEN D FH (FRTGEFEH)
Q@ WFIER: EERKIEH —MSEST FHINEIURTH
“BUHERH” 1\
@ REHFMSFRIREHFEEHS RFRE LHAS.
@ HEEHKAC 400nm, LI 640nm.




Example (7% -#2M (Inductive-Nomological))
Q: At ATIBRIRSTR?
A:(1) TBAEBKE

(2) BRI ZA

Example (4t1189)

Q: Aft4 R TrAEFIAMIEZRETIR T ERIZRIEANTE?

A:(1)80% HYERMKIBEIGE (MAIXN, LRBER, LF
REBAE) MERHITIRE. (BEARFE TG
(2)R TEHIBFEIRFRAR T ERIZIEAN.

Example (JAZHAY)
Q: Aft4a R LT ERIEIES IR T ZZIREANTE?

A: BB R Tt PTEMM XM EMAAELERRFERETER.




Example (B9, #kEE)

Q: Aft ANt HE 32
A: B B BRIS 4 Al SR -

Example (f§7&)

Q: At Attt HE)?

A: AR RSENFEIR—NFENKEST.

Example (B#. {EAERFRIITEN)

Q: A ARITERSFIZR?
A: BEARRITA T HIHIE L REBK .
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What are answers to Why-Questions?

@ Why: used to ask or talk about the reason for something

@ Explanation: the reasons you give for why something

happened or why you did something.

@ Cause: a person, event, or thing that makes something

happen.

@ Reason: why someone decides to do something, or the cause

or explanation for something that happen.

LONGMAN Dictionary of Contemporary English(the Forth Edition)



§2 Explanation & Scientific Explanation

Since explanations can often be thought of as answers

to why-questions, we also discuss some topics in the

theory of explanation.

An Approach To Why-Questions(Antti Koura,1988)

Why-Question - Explanation

Scientific Explanation

=
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Scientific Explanation

MR REREEFEI AR FURRRE R 1ZH 2
H—n&HERE. HEBAFGEHHEH, WERRIE
TGN MFELE . XNMERENEMN, Bk
EHRLEFRY, GEXBURERTFN.
MERABSHN—MBRENTE “HBFF (explication,
AR, EIEMAFEESMNAELE, ATLUAEE

i AR S & B U FR Rt — R U A SR R AR I S &
R, AMEGRFLHEHES.

Scientific Explanation (Alex, 5“]"—?37"51?15,2002)



Hempel Deductive-Nomological(DN) model

R1:

R2:

R3:

R4:

The explanandum must be a logical consequence of the

explanans.

The explanans must contain general laws, and these must

actually be required for the derivation of the explanandum.

The explanans must have empirical content; i.e., it must be
capable, at least in principle, of test by experiment or

observation.

The sentences constituting the explanans must be true.

Studies in the logic of Explanation(Hempel, Oppenheim, 1948)
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Problems for Hempel's model

1. Accidental Generalizations

R2: The explanans must contain general laws, and these must

actually be required for the derivation of the explanandum.

Example (—RRAEAR AAEHEIRES)

(1) FF B Bsa i A T iR
(2) B—FW7
BBl (3) B—TFM T

Example (E—R&#1EE)

(1) XBE THIFTA/NARIE LA — M8 (2) BZRXRE
TH—RU/NAETA (3) BEEEAMGE 1183
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What are general laws?
ZELWILERRINA HERNIJLMHE, BRETI Z
IR
o ERRWTHERANE BEGHE. “FiH AWME B FE “NR
E1B E L%, BAFEHF ZERRE".
o EERHNIESHISPAMMIEEFENNR., S FIBTE.

Example (Salmon,1989)

B SLILERIR Ch$R R B R E A #8100 M
FRESLILBRIREE SR BRE AT 100 M,
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2. Irrelevant Premises

(1) FFERAEZANS AT HZ,
(2) /NER (58) BRAA T2 2.
FREA (3) /NER (5B) A2iRZ.
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3. Asymmetry

Example

Why does this flagpole have a shadow of 10 metres long?

The flagpole is 10 metres high. The sun is at 45° above the
horizon.

Because light moves in a straight line, we can derive (by means of
the Pythagorean Theorem) that the flagpole has a shadow of 10

metres long.

Example

Why is this flagpole 10 metres high?
The flagpole has a shadow of 10 metres long. The sun is at 45°
above the horizon.

Because light moves in a straight line, we can derive (by means of

the Pythagorean Theorem) that the flagpole is 10 metres high. 4 /40



Strategies for Solving Problems

1. Causal Derivation(Daniel Hausman)

Hausman's solution is straightforward: only derivations from
causes (causal derivations) are explanatory, derivations from effects
are not explanatory.

The criterion for distinguishing them is independent

alterability:

Definition (Independent Alterability)

For every pair of variables, X and Y, whose values are specified in a
derivation, if the value of X were changed by intervention, then the

value of Y would be unchanged (Hausman, 1998, p.167).

15 /40



2. Positive Causal Factors (Nancy Cartwright)

Cartwright requires that the explanans contains causes and that it

increases the probability of the explanandum:

why did the mayor contract paresis(FRiE 4 iR )?
he had untreated latent syphilis. (FR4H§E)
7% of the people with latent untreated syphilis get paresis.

16 /40



3. Positive and Negative Causal Factors (Paul Humphreys)

According to Humphreys, singular explanations have the following
canonical form:

Yin S at t (occurred, was present) because of ¢, despite 1)
(Humphreys, 1989, p.101).

Example (Why did Albert die?)
(1)The bubonic plague bacillus (FEFERFFE) will, if left to develop

unchecked in a human, produce death in between 50 and 90% of cases.
(2)It is treatable with antibiotics(¥14 %) such as tetracycline( T4 %),

which reduces the chance of mortality to between 5 and 10%.

(3)Albert contracted plague bacillus and was treated with antibiotics.
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4. Unificationism (Philip Kitcher)

According to Kitcher, An ideal explanation does not simply list the
premises but shows how the premises yield the conclusion.

Explanatory Unification and the Causal Structure of the World,1989

o K: A set of beliefs

@ A systematization of K: Any set of arguments whose premises
and conclusions belong to K.
@ Unification: Unification is reached by systematizing our set of

beliefs.

@ An acceptable argument is an explanation if and only if it
instantiates an argument pattern that belongs to a privileged

set of argument patterns.

18 /40



An argument pattern is a triple of
@ A sequence of schematic sentences;
@ A set of sets of filling instructions;
@ A classification.

Sequence of sentences:

@ Harry Smith (a) is a member of the Greenbury School Board
(P).

@ All members of the Greenbury School Board (P) are bald.

@ Harry Smith (a) is bald.

Classification:
(1)and (2) are premises, (3) follows from (1) and (2) by

means of universal instantiation and modus ponens.
19/40



@ Sequence of schematic sentences:
(1)aisaP.
(2) All P’s are bald.
(3) ais bald.
e Filling instructions
(F1): In (1) a must be replaced with the name of an
individual, P with an arbitrary predicate.
(F2): In (2) p must be replaced with the same predicate as in
(1).
(F3): In (3) a must be replaced with the same name of an
individual as in (1).
o Classification
(1) and (2) are premises, (3) follows from (1) and (2) by

means of universal instantiation and modus ponens. 2040



5. The Causal-Mechanical Model (Wesley Salmon)

Etiological explanation --- involves the placing of the
explanandum in a causal network consisting of relevant
causal interactions that occurred previously and suitable
causal processes that connect them to the
fact-to-be-explained. [Salmon, 1984, p.269]
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Summary of Strategies

Are explanation
arguments

Can explanations
contain accidental
generalsations

Can explanations
contain irrelevant
premises?

Do explanations cite
causes

Do explanations
increase the
probability of the
explanandum?

Hempel

Yes

Yes

Yes

No

Yes

Hausman

Yes

No

No

Yes

Yes

Cartwright

No

N/A

N/A

Yes

Yes

Humphreys Kitcher

No Yes
N/A No
N/a No
Yes No
No Yes

Salmon

No

N/A

N/A

Yes

No
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§3 The Logic of Justification

The Logic of Provability (Godel, 1933)

Godel suggested a provability reading of modal logic S4,

which is axiomatized over the classical logic by the following list of

postulates:
e O(F— G) —» (OF - 0OG) Deductive Closure/Normality
e OF— OOF Positive Introspection/Transitivity
e OF— F Reflection

o - F=FOF Necessitation Rule

23 /40



The Logic of Proofs (Artemov, 1995,2001)

Axioms and rules of the Logic of Proofs LP are those of

classical propositional logic plus axioms

0s:(F>G) = (t:F—[s-t:G) Application
o t: F—=It:(t: F) Proof Checker
@ s:—[s+t]:Ft:F—[s+t:F Sum

et:F—F Explicit Reflection
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The Logic of Justification (Artemov, 2008)

The celebrated account of Knowledge as Justified True Belief
commonly attributed to Plato was widely accepted until 1963
when a paper by Gettier (1963) opened the door to a broad
philosophical discussion of the subject.

Justification Logic is based on classical propositional logic
augmented by justification assertions t: F that read tis a
justification for F.

@ Justification = Explanation

@ Kripke-Fitting model.

25 /40



§4 The Logic of Knowledge Why (KW)

Language:(single-agent)

Al
A2
A3
A4
A5
A6
R1
R2

e=T|plpleNe|Kp| Kunyp

Classical Propositional Axioms

Klp =) = (Kg = K¢)

Kuhy(p = 1) = (Kwhyp = Kuwnyt))
Kwnye — Ko

Kwhyp — KK whyp

Ko — KKyp

Modus Ponens

Fo = FKp

26
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Basic Epistemic Semantics

Definition (KW-model: M = (W, E,R, E,V) )
W: The set of possible worlds

E: The set of explanations

R: The accessible relation between the worlds in W, R is transitive.

E: E(t,p) C W specifies the set of possible worlds where t is
considered admissible explanation for .
An admissible explanation function &€ must satisfy the
conditions: Vr,s, If weE(r, o — ¥)NE(s, ), then there exists
t such that w €€ (t,¢) and v €E(t, ) for all v such that wRv
and v €E(r,o = Y)NE(s, p)

V: Atom — P(W)

R7 /40



Now, we can define the satisfiable relation IF:
o wiF T
o wlik piff we V(p)
o wlk -y iff wlff ¢
o wiFp Ay iff wiF ¢ and wik ¥
o wlk Ky iff for each v such that wRy, v ¢

o wlk Kunyp iff (1)3t,w €E(t, ), Vv, wRv, v €E(t,¢) and (2)
Vv, wRv,vIF ¢

28 /40



Soundness and Completeness

KW is sound and complete for the class of all KW-models. \

Soundness:

Induction on derivations in KW. Let us check the axioms.

A3: Suppose w I KCyn, (¢ — 1) and wik Kypytp. Then by the
definition of I, we have that
dnweE(r,p =), veE(r,p = ), vIF ¢ = 1, vIF ¢ and
ds, w €E(s, @), v €E(s, ) for each v such that wRv. By the
closure conditions of the admissible explanation function, we
have that there exists t,w €£(t,v) and vIF 1, v €E(t, 1) for

each v such that wRv. Hence w i KC,p,0).

29 /40



Completeness:

To establish completeness, we use standard canonical model
construction. The canonical model M€ = (WF, E°, R°.E€, V<) for
KW is defined as follows:

Let Form be the set of all formulas. Define
Y ={| f: Form ~» E, fis a partial function}. For each fe %, f
satisfies the condition as follows: If (¢ — 1) = rand flp) =5,
then there exists t such that ¢)) = t.
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o W= {(I',f) | (I, f) eMCSxX, If Kynyp €T, then there
exists t such that f{¢) = t}, MCS is the set of all maximal
consistent sets in KW. Following an established tradition, we
denote elements of W< as (T, 1), (A, g), and so forth;

o (I', HAR(A, g) iff for all formulas such as Kynyp €T,
fly) = g(e) and T# C A, where
I# = {¢ | Kwhyp € TY{Kunyp | Kunyp € T}U{p | Kp € T}

o £t ) = {(I', 1) [ Kunyp € T, flp) = t}

o Vi(p) ={({l'H[peTl}
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To prove R€ is transitive:

Suppose (I', HR(A, g) and (A, g)R°(O, h). ,1) are arbitrary
formulas. Suppose Kynyp, K1y € I'. By the definition of R, we
have f() = g() and g(v) = h(i), thus fl) = h(). By the
axiom IF ICyp — KKqp and the properties of MCS, we have
KK+ € I'. By the definition of R, we have ¢, Kyn, 0, K € A.
Since Kunyp € A and (A, g)R(O, h), we have ¢, Kynp € ©. As
K¢ € A and (A, g)R°(©, h), we have 1) € ©. Therefore we
conclude that (T", fR(©, h) by the definition of R°.
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To prove £°€ is well-defined:

Suppose (I, f) €€°(r, o — 1) and (T, f) € E(s,p). Then we
have f(¢ — 1) = r and fl) = s. By the condition of f, we have
that there exists t such that f(¢) = t. Thus (I', ) €€°(t, ) by the
definition of £¢. V(A, g), (', HR(A, g). By the denfinition of R€,
If ViCwhy € T, then Kunyp € A and () = g(p). Thus we have
fl4)) = g(¢)) = t. Hence (A, g) €€°(t,4)).
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The Truth Lemma claims that for all ¢'s,
(I, I ifand only if p € T

This is established by standard induction on the complexity of ¢.

The atomic cases are covered by the definition of / IF'. The

Boolean induction steps are standard. Consider the case when ¢ is

Kwhyt for some 1.

< If Kunyp € T, then ¢, Kynyth € A such that (I, HR(A, g) by

the definition of R°. By the Induction Hypothesis, (A, g) I 1.
In addition, 3t, (', f), (A, g) €€°(t,¢) by the definition of W°
and E£€. Hence (I', f) I Kyt

= If Kunytp € T, then for all t,(I', f) E°(t, ), Hence
<F7 f> U’L Kwhyw-
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Lemma (Existence Lemma)

For the logic KW and any state (T', fy € WE. If Ky € (T, f) then
there is a state (A, g) € W€ such that (I', )R°(A, g) and ¢ € A.

Proof. Let A" be
{o} U{e [ Ko e wp U{Kwnth | Kunyh € wh U {x | Kunyx € w}. Then
A~ is consistent. Suppose not. Then there are
15 Pmy Kuwnythr, -, Kwhy¥n, X1, - -+, X1 such that
Fow @1 A Aom ARwhy01 Ao AR umythn A X1 A -+ A X — 2.
Frow (@1 A= Am ARuwnytbr A= ARwhytbn A X1 A -+ Axy) = K=
Fow (o1 A+ AR pm AKKwhyo1 A -+« A KK unybn ANKx1 A+ - ACx1) —
Klpi A ANpm A Ruwnytht A= ARwhyon A X1 A=+ AXi)

t Kwnyp € A\T

dom(g) = dom(f) U {¢ | Kunyp € A}, glp) = ,
fly) otherwise
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KW4: KW+ Ky — ¢ (AT)

Definition (KW4-model)

KW-model with reflexive accessibility relations R.

KWH4 is sound and complete for the class of all KW4-models.

Proof.

Soundness: It is sufficient to prove A7 holds in KW4-models. Trival

Completeness: It suffices to check that R° in the canonical model is
reflexive. To prove (T, HR(T, f) for all (T, f) € WE.

VI whyp, Kt € I, by F Kunyp — K¢ and the properties of MCS, we have
Ky € I'. Similarly, we have ¢,9 € I, as = Ky — ¢ for any formula ¢.
Hence we have (T, i R°(T', f} by the definition of R°. O
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KW45: KW+-Kp — K-Kp (A8)+—Kunyp — KKy (A9)

Definition (KW45-model)

KW-model with reflexive and Euclidean accessibility relations R.

KW45 is sound and complete for the class of all KW45-models.

37 /40



Soundness: [A8]. Trival. [A9]. Suppose w ik =/Cyny . Then by
the definition of I, we have three cases as follow:

o Vt,w ¢E(t,¢): For each v such that wRv, we have vR°w by
wRw and the Euclidean property of R°. Thus v ¥ K,y
(e.g. vIF =Kunyp) for all v such that wR. Hence we have
w lE K=K yhyp.

e Jv,wR° and Vs, v €E(s, ¢): For each u such that wRu, we
have uR°v by wR°v and the Euclidean property of R¢. Thus
ulfF Kunyp (e.g. ulk —Kunyp) for all usuch that wReu.
Hence we have w Ik K=/Cypy 0.

@ Ju, wR°u and ulff . For each v such that wR°v, we have
vRu by wR°u and the Euclidean property of R°. Thus
vIF Kunye (e.g. vIE =Kunyp) for all v such that wRev.

Hence we have w - K=/Cypy 0. e
] )



Completeness: It suffices to check that R in the canonical model is
Euclidean.

Suppose (I', HR(A, g) and (I, fHR(O, h). Then for all formulas
such as Kunyp € T', flp) = gle) = h(p). For arbitrary Kunyp, Kb € A,
we have ICypyp € I and K9p € I'. Suppose not. By the properties of
MCS, we have =KCypyp €' or =Kop € T'.

0 Kunyp € It By =Kunyp = K-y and properties of MCS, we
have K—/Cuny € I'. Then we have (T, f) IF K=/Cynyp € T' by the
truth lemma. Then we have (A, g) IF =ICunyp. Then we have
~Kuwnyp € A. Contradiction.

@ —/Cy € I': Similarly, we also get contradiction.

Therefore, it follows that KCuhyp, K1y € T'. Since (I', HR(O, h), we have
Kuwhyp, @, € ©. By the definition of R, we conclude that
(A, g)R(O, h).
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Thank you very much for your attention!
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